GAS VELOCITY PROFILE IN THE TURBULENT FLOW OF A
GAS SUSPENSION IN A CHANNEL OF ANNULAR CROSS SECTION

F. E. Spokoinyi UDC 532.529.5

On the basis of concepts concerning two dynamically independently acting zones of a stream
in an annular channel and the existence of a universal velocity profile in each zone, the para-~
meters of this profile are calculated for the carrying medium of the gas-suspension stream.

Channels of annular cross section find the most extensive distribution in different types of heat ex-
changers, including those using a gas-suspension siream as the heat-transfer agent. Such channels are
of interest for the heat-removal systems of various reactors, pneumatic transport systems, and other
technological devices. The study of the heat exchange of gas-disperse systems having such surfaces is
paid undeservedly little attention in comparison with gas-suspension streams in pipes [1]. At the same
time, the available reports [2-4] have a purely empirical nature. The reason for the lagging of theoreti-
cal studies is the total absence of data on the characteristics of the average velocity profile of the carry-
ing medium in the flow of a gas suspension in an annular channel, In the calculation of the velocity pro-
files of homogeneous streams in such channels [5-8] the stream is divided info two coaxial zones (from ry
to rx and from r, to ry) regardless of the type of dependence used for the turbulent viscosity (Deissler's
or van Driest's equations or a "central law"), The velocity profile in each zone is determined by the proxi-
mity of only one of the channel walls. The conditions 7=0 and dv/dr =0 are usually used to separate the
zones and determine the value of rx. An analysis of the known experimentatl data indicates the noncoinci-
dence of these boundaries and leads the authors of [8], for example, to the conclusion that there is nega-
tive turbulent viscosity. The boundary corresponding to the condition 7=0 lies at the intersection of the’
extensions of the velocity profiles calculated for each zone [8]. The method proposed by Maubach [9, 10]
for homogeneous streams seems the most convenient for analysis and at the same time is accurate enough.
The essence of the method consists in the use of bhalance equations based on the assumption that a universal
logarithmic velocity distribution exists in both zones of an annular channel. The results of calculations of
homogeneous streams by this method [9, 10] agree well with the experimental data, The introduction of
particles into the stream leads to a change in the profile of the carrying medium. In this case the turbulent
mechanism of momentum transfer is retained in the core of the stream while in the boundary zones the
momentum transfer in the carrying medium takes place primarily through molecular viscosity. Such con-
siderations allow one to assume that in the movement of a gas suspension, just as in the flow of a homo-
geneous medium, the gas velocity profile in the zones of the channel has a logarithmic nature in the core
of the stream and a linear nature near the wall. In this case the parameters of these functions vary eon-
siderably in the presence of particles in the stream. A hydrodynamic theory of the heat exchange of gas-
suspension streams in tubes developed in {11] on the basis of a similar assumption was confirmed by ex-
perimental data. Thus, the stabilized stream of a gas suspension in an annular channel can be conditionally
separated into an inner zone (index 1) and an outer zone (index 2). The velocity profile in each of the zones
can be represented on the basis of the two-layer model in the following form:
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In these expressions v = VL/Vl ; yL vflr —r; /v vl =VTy1/p; X and a are constants of the logarithmic pro-
file, For a contmuous stream the Karman constant is )(0:0 4 and the value of a= (1/x)In5T+6", determined
from the condition of continuity of the velocity profile at yl =57, is 5.5. In the determination of the para-
meters of profiles (1) and (2) for a gas-suspension stream, it is necessary to consider that this profile cor-
responds to the shear stresses produced only by the visecous and turbulent friction of the carrying medium.
To find the values of these stresses at the channel walls () we use the method proposed in [12] for gas-
suspension streams in round pipes, This method is more reliable than that developed in [13], since the
series of insufficiently grounded assumptions adopted in [13] often leads to physically unjustified results
(for example, with y > 3 and pg/p= 10%, the thickness of the boundary layer turns out to have an imaginary
value according to [13]). According to [12] the pressure losses to gas friction are determined from the
total losses after subtraction of the contribution of the impact interaction of the particles with the wall (the
expenditures in raising the particles are negligibly small under these conditions). For the impact frequency,
the pressure losses, and the coefficient of resistance due to the shock interaction one can obtain
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where ¢ is the coefficient of velocity loss upon impact, ¢' =vs/v characterizes the degree of entrainment
of the particles in the pulsation motion of the gas and can be estimated from [14}; v'/v} reflects the coun-
tereffect of the particles on the intensity of the pulsations of the carrying medium [15, 16]. For particles
with rg »06 and rg «§ the following respective equations can be obtained (§f=2APfD/pr72):
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These functions allow one to calculate the characteristic frictional stresses for the entire stream in an
annular channel. To determine the corresponding values in the zones one can, as in [10], use the equality
of the pressure losses to friction in the zones and in the entire stream. In this case 7,/D=1y;/Dj, where
D; are the hydraulic diameters of the zones. With allowance for the definitions a= r;/r, and 3= r+/r, one
can obtain by analogy with [9]
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Thus, the following values in (1)-(2) are unknown:a (or 6%),x,and r« (or B). One of the conditions rela-
ting these parameters is the mtersectlon of the velocity profiles at the boundary of separation of the zones,
i.e., at the point r =rg: Vi, = Vi Vimax —v2 Vimax- By determining the v} for the gas-suspension stream
from the values of 7y, and ¢ from (6)-(8), we obtain
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Then Eq. (9) can be written in the form
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The second condition is the equation of mass balance of the gas stream with allowance for its division
into zones:

‘U—xesx -+ 52F292 =y (Fig; + Foty),

where F; is the cross-sectional area of the i-th zone; ¢ is the average porosity in the zone; \7.1 is the velo-
city of the continuous component of the gas-suspension stream averaged over the cross section of the zone.
When g4 =¢, this equation can be represented in the following dimensionless form with allowance for Eq.

{8):
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In order to use this condition we determine the values of the average dimensionless velocities in each zone

R=r/ry; Aj=6(/1y):
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If one neglects terms of order N and the second terms in the brackets of Egs. (13) and (14) because of
their smallness in comparison with the first terms angd if one uses the expression for a through 6%, then
{13) and (14) can be reduced to the following form:
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When x =y,=0.4 these expressions coincide with those obtained in [9] for a continuous stream in an an-
nular channel. The function obtained in [12] for a gas-suspension stream in a round tube follows from (16)
as 8 —0, If one substitutes the functions (15) and (16) into (12) with allowance for Eqs. (10),then the equa~
tion obtained can be solved jointly with Eq. (11) to determine the parameters of the velocity profile, The
dependence of the Karman constant on the particle concentration, obtained in [17] for gas-suspension
streams in round pipes, can be taken as the third equation in this system. This empirical dependence is
well approximated by the equation {12]
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Equation (17) can be used only by way of a first approximation, since it is obtained for a velocity profile
which differs from (1)-(2) and does not take into account the properties of the dispersing agent. By trans-
forming Eq. (11) with allowance for (10) one can express the value Vimax through B:
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Substituting this expression into (15) and (16) and then into {12) we obtain the following equation:
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The solution of (19) allows one to establish the dependence of the position of the boundary 8 between the
zones on the ratio o of the radii of the walls of the annular channel and on the value of the complex xv8/E,
which takes into account the effect of the concentration . The results of calculations by (19) performed
by G. V. Derevyanko. are presented in Table 1. As follows from Table 1, the values of it essentially
depend on o, decreasing slightly with an increase in y+B/f and being almost independent of it at large a.
The results of the calculations of [9] for a homogeneous stream are in complete agreement with the data
of Table 1 on the part of the dependence of 8 on o and the Reynolds number. In this connection, the
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TABLE 1. Dependence of the Values of g and aX +In[RevE/8) (the
latter are given in parentheses) on the Geometry of the Channel and
the Complex X+B/F

[+ 3

ZVG/E ‘ 0.1 ‘ 0.2 0.4 0.6 0,8

6 0,3494 04727 | . 0,6452 0,779 0,8955
(8,30) (8,33 | (8,3) (8,39) (8,43)
10 0,3392 0,4651 0,6414 0,7782 0,8952
(12,30) (12,35) (12,40) (12,38) (12,47
14 0,3338 0,4610 0,6394 0,7773 0,8950
(16.30) (16,33) (16,36) (16,39) (16,42)
18 0,3305 0,4584 0,6381 0,7768 0,8949
(20,32) (20,34) (20,40) (20,31) (20,30)
922 0,3262 0,4567 0,6373 0,7765 0,8948
(24,34) (24,34) (24,31) (24,63) (25,62)
26 0,3265 0,4554 0,6366 0,7762 0,8948
(28,33) (28,33) (28.42) (28,38) (27,78)
30 0,3253 04544 | 0,636l 0,7760 0,8947
(32,33) (32,40) (32,46) (32,83) (36,76)

coefficients of resistance were determined in [9, 10] for a homogeneous stream since in that case, in con-
trast to the problem under consideration, the values x =x, and a =ay are known. Having available the values
of B, one can on the basis of Eqs. (10) and (18) obtain an expression for calculating a:
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The results of calculations of ay +In(Reve/8), which take into account the effect of the particles on the
velocity profile, are also presented in Table 1. It is almost independent of the value of . This is evident-
ly connected with the fact that a and ¥ are universal parameters of the velocity profile and depend only on

the properties of the particles and their concentration in the stream. The data of the calculations by (20)
are approximately described by a linear function of yv8/¢:
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This function, obtained for channels of annular cross section, corresponds to a relation brought out earlier
for gas-suspension streams in pipes [12]. Withy =x=0.4 and a =a(=5.5 the expression (21) satisfies the
condition of a limiting process, since it agrees with high accuracy with the well-known data of [18] on the
resistance of homogeneous streams @ =0). The function (21) makes it possible, by estimating beforehand
the values of £ and y from Eqs. (6), (7), and (17) for the given Re, o, and u and with the properties of the
particles and the flow resistance £ being known, to determine the value of a. The dependence of the
Karman constant in a gas-suspension stream on the concentration and the characteristics of the particles
can be refined on the basis of the expression (21). For this one must have available data on the pressure
losses in a gas-suspension stream for the same particles at different values of p and the Reynolds number.
Then, by solving a system of equations of the type of (21) for a fixed value of ¢ and different Re, one can
establish the desired functions for the parameters X and a of the profile,

If, as in the calculation of the heat~exchange intensity [1], the determination of the thickness of the
viscous layer in the gas-suspension stream is of the greatest interest, the value of §* can be obtained
through a numerical or even a graphic solution of the equation Ind* =y ®* —a). The absolute values of
6 at both walls of the channel are calculated using (8) on the basis of the equation
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Reliable experimental data on the velocity profile of the carrying medium of a gas-suspension stream in
an annular channel are absent at present, which can be explained by certain experimental difficulties which
arise in this case. At the same time, the obtaining of this kind of data is very urgent, just for the testing
of the proposed method of calculation through the comparison of experimental and calculated data on heat
exchange with such streams.




NOTATION

D, Equivalent diameter, m; mg, mass of one particle, kg; N, calculating concentration of particles,
1/m®; v, v*, absolute and dynamic velocities, m/sec; ry, ry, r+, radii of walls of annular channel and of
boundary separating the zones, m; y, distance from wall, m; &, thickness of viscous layer, m; £, coef-
ficient of resistance; u, flow-rate mass concentration; p, density, kg/m3; T, shear stresses, N/m?.
Indices: s, solid particles; O, stream without particles; ', pulsation value; w, value at wall; 1, 2, inner
and outer walls and zones adjacent to them.
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